On Akcoglu and Sucheston’s operator convergence theorem in Lebesgue space
نویسندگان
چکیده
منابع مشابه
The Lebesgue Monotone Convergence Theorem
For simplicity, we adopt the following rules: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, E is an element of S, F , G are sequences of partial functions from X into R, I is a sequence of extended reals, f , g are partial functions from X to R, s1, s2, s3 are sequences of extended reals, p is an extended real number, n, m are natural numbers, x is an element of X...
متن کاملStability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space
In this paper, we prove the existence of a random fixed point of by using pointwise asymptotically nonexpansive random operator and the stability resultsof two iterative schemes for random operator.
متن کاملA General Theorem on the Convergence of Operator Semigroups
In all of these theorems the notion of convergence used in (1-1) and (1-2) has essentially been strong convergence. It is the purpose of the present paper to prove analogous theorems for a certain class of notions of convergence, which will include, in the case of Banach spaces of functions with the sup norm, bounded, pointwise convergence, and convergence of bounded sequences which is uniform ...
متن کاملOn convergence of certain nonlinear Durrmeyer operators at Lebesgue points
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...
متن کاملThe Sampling Theorem in Variable Lebesgue Spaces
hold. The facts above are well-known as the classical Shannon sampling theorem initially proved by Ogura [10]. Ashino and Mandai [1] generalized the sampling theorem in Lebesgue spaces L0(R) for 1 < p0 < ∞. Their generalized sampling theorem is the following. Theorem 1.1 ([1]). Let r > 0 and 1 < p0 < ∞. Then for all f ∈ L 0(R) with supp f̂ ⊂ [−rπ, rπ], we have the norm inequality C p r ‖f‖Lp0(Rn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1973
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1973-0341138-0